# **TYPICAL ENGINEERING INFORMATION**





# **TYPICAL ENGINEERING INFORMATION**

- CONSTRUCTION NOTES
- RETAINING WALL DETAILS WITH FENCE
- **FENCE POST DETAILS & SECTIONS**
- **RETAINING WALL DETAILS WITHOUT FENCE**
- **DIY WALL CORNER DETAILS**
- GRAVITY WALL DETAILS NO FINES CONCRETE INFILL
- CMAA FENCE DETAILS BUILT ON CONCRETE PIERS
- CMAA FENCE DETAILS BUILT ON CONCRETE FOOTINGS

## **CONSTRUCTION NOTES**

### SOIL TYPE DESCRIPTIONS

### **TYPE (A) SOILS**

### **TYPE (B) SOILS**

| Includes soft and firm clay,         |
|--------------------------------------|
| fine sands, silty clays.             |
| Internal Friction                    |
| Angle $\geq 20^{\circ} - 24^{\circ}$ |

Includes stiff sandy clays and gravelly clays Internal Friction Angle  $\ge 25^{\circ} - 30^{\circ}$ 

- 1. The following assumptions have been made regarding soil properties:
  - a. Infill Soil Types As Above: Internal Friction Angle ≥ 200 300+
  - b. Bearing Pad Compacted density angle: at least 18.6 kg/m3
     Effective internal friction angle: at least 37°
     Effective Cohesion: at least 5kPa
- 2. Caution is required when using heavy or dry clays as retained soil or backfill.
- 3. Surcharge loads are as follows:Domestic Vehicles-500 kg/m2 (5 kPa)Heavy Vehicles-To be separately assessed
- 4. Drainage shall be supplied in the form of a slotted P.V.C. ag-pipe with geotextile sock drain
  - (fall at 1:100 min. to S/W disposal system) or with weep holes.
  - A 300mm drainage layer shall be provided behind the wall.
- 5. Max height for core filling Up to 1.8m per pour
- 7. For backslope conditions greater than 1 in 4, seek specific engineering advice.

Vehicle traffic should be allowed no closer than 1 metre behind the wall.

Engineering - To comply with most council requirements, please seek specific engineering advice for walls over 1 metre high ,low walls in proximity to boundary or carrying vehicle traffic, etc.

### (RETAINING WALL WITH FENCE)



**RETAINING WALL DETAIL - WITH FENCE** 

### **RETAINING WALL DETAIL - WITH FENCE**

# **TYPICAL DETAIL**

### (DIY BLOCKS WITH FENCE POST OPTION)

ADDITIONAL STARTER AND VERTICAL

RETAINING WALL VERTICAL STEEL AT 400 CRS

STEEL AT EACH FENCE POST. REFER TO TABLE FOR DETAILS.



#### PLAN DETAIL AT FENCE POST **C100mm PURLIN SECTION FENCE POST**

D

C D



**RETAINING WALL** 

SCALE 1:5

LOW SIDE

### TYPICAL ENGINEERING (RETAINING WALL WITHOUT FENCE)

| H - Wall<br>height<br>(m) | W - Base<br>width<br>(m) | Starter<br>bar<br>type | Bar lap<br>min<br>(mm) | Transverse<br>bar type | Longitudinal<br>bar type | Soil<br>type |
|---------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------|
| 0.60                      | 0.6                      | N12                    | 500                    | N12                    | N12                      | Туре А       |
|                           | 0.6                      | N12                    | 500                    | N12                    | N12                      | Туре В       |
| 1.00                      | 0.9                      | N12                    | 700                    | N12                    | N12                      | Туре А       |
|                           | 0.9                      | N12                    | 700                    | N12                    | N12                      | Туре В       |
| 1.40                      | 1.5                      | N16                    | 700                    | N16                    | N16                      | Туре А       |
|                           | 1.3                      | N16                    | 700                    | N16                    | N16                      | Туре В       |
| 1.80                      | 1.6                      | N16                    | 700                    | N16                    | N16                      | Туре А       |
|                           | 1.4                      | N16                    | 700                    | N16                    | N16                      | Туре В       |

#### RETAINING WALL HEIGHT, WIDTH AND REINFORCEMENT REQUIRED

SOIL TYPE A - SOFT AND FIRM CLAY, FINE SANDS AND SILTY CLAYS. SOIL TYPE B - STIFF SANDY CLAYS, GRAVELLY CLAYS, ROCK, SANDSTONE AND GRAVEL.



#### **RETAINING WALL DETAIL - WITHOUT FENCE**

#### **RETAINING WALL DETAIL - WITHOUT FENCE**





Vertical steel set out

| Backslope               | Wall          | Base             | Width of no fines concrete                           |        |  |  |  |  |
|-------------------------|---------------|------------------|------------------------------------------------------|--------|--|--|--|--|
| Conditions/<br>Loadings | Height<br>(m) | thickness<br>(m) | Width of no fines concrete<br>backfill behind blocks |        |  |  |  |  |
|                         |               |                  | Туре А                                               | Type B |  |  |  |  |
| Level with:             | 1.0           | 0.20             | 0.35                                                 | 0.3    |  |  |  |  |
| No                      | 1.25          | 0.20             | 0.45                                                 | 0.45   |  |  |  |  |
| Surcharge               | 1.5           | 0.25             | 0.65                                                 | 0.65   |  |  |  |  |
|                         | 1.75          | 0.30             | 0.95                                                 | 0.95   |  |  |  |  |
|                         | 2.0           | 0.35             | *                                                    | 1.15   |  |  |  |  |
| Domostic                | 1.0           | 0.15             | 0.55                                                 | 0.45   |  |  |  |  |
| Vehicles                | 1.25          | 0.20             | 0.65                                                 | 0.65   |  |  |  |  |
|                         | 1.5           | 0.25             | 0.95                                                 | 0.75   |  |  |  |  |
|                         | 1.75          | 0.30             | 1.25                                                 | 1.05   |  |  |  |  |
|                         | 2.0           | 0.35             | 1.55                                                 | 1.35   |  |  |  |  |
| 1.4                     | 1.0           | 0.15             | 0.65                                                 | 0.55   |  |  |  |  |
| Backslope               | 1.25          | 0.20             | 0.85                                                 | 0.75   |  |  |  |  |
|                         | 1.5           | 0.25             | 1.45                                                 | 1.15   |  |  |  |  |
|                         | 1.75          | 0.30             | *                                                    | 1.55   |  |  |  |  |
|                         | 2.0           | 0.35             | *                                                    | 1.75   |  |  |  |  |



### **NO-FINES CONCRETE BACKFILL/INFILL SPEC.**

No-fines concrete infill placed behind retaining walls shall be freedraining, allowing water to pass readily through it to the drainage system. In its unhardened state, no-fines concrete shall have low slump and shall not exert a lateral pressure in excess of 4 kPa per metre depth on the retaining wall facing restraining it. No-fines concrete used to provide enhanced stability to a retaining wall shall have a bulk density not less than 1800 kg./m3. No-fines concrete shall form a coherent mass, capable of adhering to the retaining wall facing.

### No-fines concrete shall meet the following specs:

- Aggregate to GP cement ratio shall be not greater than 6 : 1
- Aggregate shall be GP (poorly graded) nominal 20mm crushed rock.
- Compressive strength shall be not less than 10 MPa.

### **Construction Notes**

- Blocks should be backfilled with no-fines concrete every 3 courses (600mm) high, blocks should be filled first prior to backfilling behind the wall to reduce pressure.
- 2. Blocks should be wetted prior to core filling to increase flow of no-fines concrete.
- 3. At least 25% of DIY block wings should be removed from the rear of the blocks prior to backfilling.

### CONCRETE MASONRY FENCES

This data sheet is applicable to any free-standing, cantilever fence or wall for residential or commercial applications.

### PART A: CONCRETE MASONRY FENCES BUILT ON REINFORCED CONCRETE PIERS

### 1 INTRODUCTION

Free-standing concrete masonry fences and boundary walls must be designed and constructed to withstand a range of loads, and in particular, wind loads. This data sheet provides guidance to qualified and experienced structural engineers on the selection of pier dimensions and masonry details for free-standing reinforced concrete masonry fences and walls, subject to a range of wind loads and set in a variety of soils.

### How to Navigate this Data Sheet

Any words in **brown** can be clicked to take you to it.

To return to where you were, click the **Previous View Button** in your Acrobat Reader

### 2 STANDARD DESIGNS

There are many possible designs for concrete masonry fences and boundary walls. Two common arrangements are shown in **Figures 1** and **2**.



### **REFER DATA SHEET 5A**

Figure 1 Reinforced Concrete Masonry Wall with Reinforced Concrete Piers

### Reinforced concrete masonry wall with reinforced concrete piers

In most circumstances, the most economical form of construction for freestanding concrete masonry fences and boundary walls is as follows (**Figure 1**): The wall consists of 190-mm hollow concrete blockwork, with a reinforced bond beam and capping block at the top and a reinforced bond beam at the bottom. The bond beams should include a single horizontal N16 depths of 450mm piers, for various combinations of pier spacing, soil type (internal friction angle), wall heights and wind classifications. Each pier should include one (or more) reinforcing bar, which extends



### **REFER DATA SHEET 5B**

Figure 2 Reinforced Concrete Masonry Wall on Reinforced Concrete Strip Footings

reinforcing bar, set in 20.20 knock-out bond beam blocks.

The wall is supported, at centres ranging from 1.8 m to 3.0 m, by 450 mm diameter reinforced concrete piers, constructed in holes bored to the required depths and spacings. Table A sets out the recommended to the top bond beam and is grouted into the 190-mm concrete blockwork.

The required number of vertical bars depends on the spacing of the piers, the wall height and wind classification. Table B sets out the recommended vertical reinforcement for 190 mm reinforced concrete masonry.

Table 1

### (CMAA DATA SHEET 5A)

(FENCES BUILT ON REINFORCED CONCRETE PIERS)

#### 3 WIND LOADS

Wind loads on free-standing concrete masonry fences and boundary walls should be calculated using AS/NZS 1170.2. However, designers often associate these structures with the design of houses to AS 4055. Strictly speaking, boundary walls and fences are outside the scope of AS 4055, although the nomenclature used therein is useful in classifying the wind exposure of housing sites for wind loads on such structures.

The nomenclature used in this Data Sheet for the "Wind Classification for Free-Standing Fences and Walls" (N1<sub>f</sub> to C4<sub>f</sub>) has been adopted to differentiate it from the corresponding nomenclature, "Wind Classification for Housing" (N1 to C4), which is set out in AS 4055 for houses. Although the resulting ultimate free-stream gust dynamic wind pressures, designated  $q_{xw}$  are the same, their derivation is different. The worked example below demonstrates the derivation for a "Wind Classification for Free-Standing Fences and Walls" of N1<sub>f</sub>

| Wind                            | Design gust wind      | Ultimate free-stream<br>gust dynamic wind | Ultimate net wind<br>pressure on free-<br>standing wall |
|---------------------------------|-----------------------|-------------------------------------------|---------------------------------------------------------|
| Classification                  | V <sub>zu</sub> (m/s) | q <sub>zu</sub> (kPa)                     | p <sub>nu</sub> (kPa)                                   |
| N1 <sub>f</sub>                 | 34                    | 0.69                                      | 0.83                                                    |
| N2 <sub>f</sub>                 | 40                    | 0.96                                      | 1.15                                                    |
| N3 <sub>f</sub> C1 <sub>f</sub> | 50                    | 1.50                                      | 1.80                                                    |
| N4 <sub>f</sub> C2 <sub>f</sub> | 61                    | 2.23                                      | 2.68                                                    |
| N5 <sub>f</sub> C3 <sub>f</sub> | 74                    | 3.29                                      | 3.94                                                    |
| NG <sub>f</sub> C4 <sub>f</sub> | 86                    | 4.44                                      | 5.33                                                    |
| N6 <sub>f</sub> C4 <sub>f</sub> | 86                    | 4.44                                      | 5.33                                                    |

Wind Classification for Free-Standing Fences and Walls

Note: Design pressure is based on an aerodynamic shape factor, C flor, of 1.20

#### 4 SOIL PROPERTIES

Soil properties used to determine the resistance to overturning of the piers for free-standing concrete masonry fences and boundary walls should be based on reduction factors given in AS 4678 and "cautious estimates of the mean" density, internal friction angle and cohesion as defined in AS 4678.

#### 5 PIER RESISTANCE

The resistance of piers of free-standing concrete masonry fences and boundary walls to overturning of the piers will be based on the principles for laterallyloaded piles set out in AS 2159. In particular, the resistance of a single isolated pier will be taken as three times the calculated passive resistance based on the factored mean internal angle of friction. Figure 3 shows the distribution of pressures resisting the overturning moments and Table 2 the assumed forward movement of the pier.

| Table 2               | Assumed Forward<br>Movement of Piers                                                                                                                                                                                                                                                                                   |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position              | Movement                                                                                                                                                                                                                                                                                                               |
| Bottom<br>of pier     | Zero movement. There is a reactive<br>force against the base "kicking<br>back" into the soil. The magnitude<br>of the force is relatively large, and<br>a function of the passive pressure<br>at the base of the pier. Although<br>spread over a small increment of<br>depth, it is assumed to be a point<br>reaction. |
| Mid-height<br>of pier | Movement assumed to be same<br>as that which would occur under                                                                                                                                                                                                                                                         |

of pier a sthat which would occur under a uniformly-distributed horizontal force, equal in magnitude to the total passive resistance.

Top of pier Movement assumed to be twice the movement at mid-height.



Taking moments about pier base of the stress distribution: M = KKopbD<sup>3</sup>/6

Figure 3 Distribution of Pressures Resisting the Overturning Moments

#### 6 DESIGN TABLES

Tables A and B set out the required depths of 450 mm diameter piers for free-standing fences and walls and required connection reinforcement between piers and 190-mm reinforced concrete masonry respectively. Table A

Required Depth of 450 mm Diameter Piers for Free-Standing Fences and Walls

| Pier  | Soil  | Wall<br>beight | Requir          | ed dept         | h of plers      | s, D (m),       | for wind        | loads           | ds Pier Soll Wall<br>spacing friction beigt |               | Wall         | Required depth of plers, D (m), for wind loads |                 |                              |                 |                 |                 |
|-------|-------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------------------------------|---------------|--------------|------------------------------------------------|-----------------|------------------------------|-----------------|-----------------|-----------------|
| B (m) | angle | H (m)          | N1 <sub>f</sub> | N2 <sub>f</sub> | N3 <sub>f</sub> | N4 <sub>f</sub> | N5 <sub>f</sub> | N6 <sub>f</sub> | B (m)                                       | angle         | H (m)        | N1 <sub>f</sub>                                | N2 <sub>f</sub> | N3 <sub>f</sub>              | N4 <sub>f</sub> | N5 <sub>f</sub> | N6 <sub>f</sub> |
| 3.00  | 25°   | 1.80           | 1.01            | 1.20            | 1.50            | 1.80            | 2.13            | 2.40            | 1.80                                        | 25°           | 1.80         | 0.80                                           | 0.95            | 1.19                         | 1.42            | 1.68            | 1.90            |
|       |       | 1.60           | 0.92            | 1.11            | 1.39            | 1.67            | 1.98            | 2.24            |                                             |               | 1.60         | 0.73                                           | 0.87            | 1.10                         | 1.32            | 1.57            | 1.77            |
|       |       | 1.40           | 0.84            | 1.01            | 1.27            | 1.54            | 1.83            | 2.08            |                                             |               | 1.40         | 0.66                                           | 0.80            | 1.00                         | 1.21            | 1.45            | 1.64            |
|       |       | 1.20           | 0.75            | 0.91            | 1.15            | 1.39            | 1.67            | 1.90            |                                             |               | 1.20         | 0.59                                           | 0.72            | 0.91                         | 1.10            | 1.32            | 1.51            |
|       |       | 1.00           | 0.65            | 0.80            | 1.02            | 1.24            | 1.50            | 1.72            | _                                           |               | 1.00         | 0.51                                           | 0.63            | 0.80                         | 0.98            | 1.18            | 1.36            |
|       | 30°   | 1.80           | 0.94            | 1.11            | 1.39            | 1.67            | 1.97            | 2.22            | -                                           | 30°           | 1.80         | 0.74                                           | 0.88            | 1.10                         | 1.32            | 1.56            | 1.76            |
|       |       | 1.60           | 0.86            | 1.02            | 1.29            | 1.55            | 1.84            | 2.08            |                                             |               | 1.60         | 0.68                                           | 0.81            | 1.02                         | 1.22            | 1.45            | 1.64            |
|       |       | 1.40           | 0.77            | 0.93            | 1.18            | 1.42            | 1.70            | 1.93            |                                             |               | 1.40         | 0.61                                           | 0.74            | 0.93                         | 1.12            | 1.34            | 1.52            |
|       |       | 1.20           | 0.69            | 0.84            | 1.06            | 1.29            | 1.55            | 1.76            |                                             |               | 1.20         | 0.55                                           | 0.66            | 0.84                         | 1.02            | 1.22            | 1.39            |
|       |       | 1.00           | 0.60            | 0.74            | 0.94            | 1.15            | 1.39            | 1.59            | _                                           |               | 1.00         | 0.48                                           | 0.59            | 0.74                         | 0.91            | 1.10            | 1.26            |
|       | 35°   | 1.80           | 0.87            | 1.03            | 1.29            | 1.54            | 1.83            | 2.06            |                                             | 35°           | 1.80         | 0.68                                           | 0.81            | 1.02                         | 1.22            | 1.44            | 1.63            |
|       |       | 1.60           | 0.79            | 0.95            | 1.19            | 1.43            | 1.70            | 1.92            |                                             |               | 1.60         | 0.63                                           | 0.75            | 0.94                         | 1.13            | 1.34            | 1.52            |
|       |       | 1.40           | 0.72            | 0.87            | 1.09            | 1.32            | 1.57            | 1.78            |                                             |               | 1.40         | 0.57                                           | 0.68            | 0.86                         | 1.04            | 1.24            | 1.41            |
|       |       | 1.20           | 0.64            | 0.78            | 0.98            | 1.20            | 1.43            | 1.63            |                                             |               | 1.20         | 0.50                                           | 0.61            | 0.78                         | 0.94            | 1.13            | 1.29            |
|       |       | 1.00           | 0.56            | 0.69            | 0.87            | 1.07            | 1.28            | 1.47            |                                             |               | 1.00         | 0.44                                           | 0.54            | 0.69                         | 0.84            | 1.01            | 1.16            |
| 2.40  | 25°   | 1.80           | 0.91            | 1.08            | 1.35            | 1.62            | 1.92            | 2.16            | Notes:                                      |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.60           | 0.83            | 1.00            | 1.25            | 1.51            | 1.79            | 2.02            | Calculations                                | are based o   | n 190 mm re  | inforced o                                     | concrete ma     | asonry                       |                 |                 |                 |
|       |       | 1.40           | 0.75            | 0.91            | 1.14            | 1.38            | 1.65            | 1.87            | Wall height i                               | s the clear h | eight of the | wall above                                     | ground su       | rface.                       |                 |                 |                 |
|       |       | 1.20           | 0.67            | 0.82            | 1.03            | 1.26            | 1.50            | 1.72            | Design pres                                 | sure is based | d on an aero | dynamic s                                      | hape factor     | r, C <sub>flo</sub> , of 1.2 | 20              |                 |                 |
|       |       | 1.00           | 0.59            | 0.72            | 0.92            | 1.12            | 1.35            | 1.55            |                                             |               |              |                                                |                 | 2                            |                 |                 |                 |
|       | 30°   | 1.80           | 0.84            | 1.00            | 1.25            | 1.50            | 1.78            | 2.00            | -                                           |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.60           | 0.77            | 0.92            | 1.16            | 1.39            | 1.66            | 1.87            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.40           | 0.70            | 0.84            | 1.06            | 1.28            | 1.53            | 1.73            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.20           | 0.62            | 0.76            | 0.96            | 1.16            | 1.39            | 1.59            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.00           | 0.54            | 0.67            | 0.85            | 1.04            | 1.25            | 1.43            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       | 35°   | 1.80           | 0.78            | 0.93            | 1.16            | 1.39            | 1.65            | 1.85            | -                                           |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.60           | 0.71            | 0.85            | 1.07            | 1.29            | 1.53            | 1.73            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.40           | 0.65            | 0.78            | 0.98            | 1.19            | 1.41            | 1.61            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.20           | 0.58            | 0.70            | 0.89            | 1.08            | 1.29            | 1.47            |                                             |               |              |                                                |                 |                              |                 |                 |                 |
|       |       | 1.00           | 0.50            | 0.62            | 0.79            | 0.96            | 1.16            | 1.33            |                                             |               |              |                                                |                 |                              |                 |                 |                 |

### (CMAA DATA SHEET 5A)

(FENCES BUILT ON REINFORCED CONCRETE PIERS)

# **TYPICAL ENGINEERING**

| Table B          | Re<br>Co        | quired Ver<br>oncrete Ma | tical Reinfo<br>Isonry for Fi                                       | rcement fo<br>ree-Standin | r Piers and<br>19 Fences a | 190-mm Re<br>nd Walls | inforced?       |  |
|------------------|-----------------|--------------------------|---------------------------------------------------------------------|---------------------------|----------------------------|-----------------------|-----------------|--|
| Pier<br>spacing. | Wall<br>height. | Require<br>for wind      | Required number and size of vertical bars, per pler, for wind loads |                           |                            |                       |                 |  |
| B (m)            | H (m)           | N1 <sub>f</sub>          | N2 <sub>f</sub>                                                     | N3 <sub>f</sub>           | N4 <sub>f</sub>            | N5 <sub>f</sub>       | N6 <sub>f</sub> |  |
| 3.00             | 1.80            | 1-N16                    | 1-N16                                                               | 1-N20                     | 2-N20                      | 3-N20                 | 4-N20           |  |
|                  | 1.60            | 1-N16                    | 1-N16                                                               | 1-N20                     | 2-N20                      | 3-N20                 | 4-N20           |  |
|                  | 1.40            | 1-N16                    | 1-N16                                                               | 1-N16                     | 2-N20                      | 2-N20                 | 3-N20           |  |
|                  | 1.20            | 1-N16                    | 1-N16                                                               | 1-N16                     | 2-N20                      | 2-N20                 | 3-N20           |  |
|                  | 1.00            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N20                      | 2-N20                 | 2-N20           |  |
| 2.40             | 1.80            | 1-N16                    | 1-N16                                                               | 1-N20                     | 2-N20                      | 2-N20                 | 4-N20           |  |
|                  | 1.60            | 1-N16                    | 1-N16                                                               | 1-N16                     | 2-N20                      | 2-N20                 | 3-N20           |  |
|                  | 1.40            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N20                      | 2N20                  | 2-N20           |  |
|                  | 1.20            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N20                      | 2-N20                 | 2-N20           |  |
|                  | 1.00            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N20                      | 2-N20                 | 2-N20           |  |
| 1.80             | 1.80            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N20                      | 2-N20                 | 2-N20           |  |
|                  | 1.60            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N20                      | 2-N20                 | 2-N20           |  |
|                  | 1.40            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N16                      | 2-N20                 | 2-N20           |  |
|                  | 1.20            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N16                      | 1-N20                 | 2-N20           |  |
|                  | 1.00            | 1-N16                    | 1-N16                                                               | 1-N16                     | 1-N16                      | 1-N20                 | 2-N20           |  |
|                  |                 |                          |                                                                     |                           |                            |                       |                 |  |

Notes:

Calculations are based on 190 mm reinforced concrete masonry

Height is the clear height of the wall above ground surface.

Design pressure is based on an aerodynamic shape factor, C<sub>8a</sub>, of 1.20

Where more than two bars are specified, it may be preferable to use external 'posts' rather than maintaining the 'post' within the 190-mm thickness of the wall.



Typical Reinforcement Details and Control Joint locations ure 4

#### TYPICAL DETAILS

e vertical bars between the piers and 0-mm reinforced concrete masonry ce should be carried up to the top nd beam and bent down before outing (Figure 4).

ere more than two bars are specified, nay be preferable to use external 'posts' rather than maintaining the 'post' within the 190 mm thickness of the wall (Figure 5).

It is recommended a control joint be placed centrally between piers at not more than twice the pier spacing (Figure 4).

190-mm concrete 450 dia. masonry fence pier under

Figure 5

External 'Post' Detail

External 'post' when more than two bars are needed

#### WORKED EXAMPLE 8

Set out following is a worked example, the purpose of which is to:

- Demonstrate the method by which free-standing concrete masonry fences and cantilever walls may be designed for a particular wind and soil; and
- Serve as a test for any software developed for designing concrete masonry fences and cantilever walls.

| DESIGN BRIEF           |                                    |                             |                     |                          |                               |              |                     |                      |
|------------------------|------------------------------------|-----------------------------|---------------------|--------------------------|-------------------------------|--------------|---------------------|----------------------|
| Design a 1.8 m hig     | gh free-standing                   | Terrain category m          | ultiplier           | Shielding multipli       | ier                           | Notes:       |                     |                      |
| concrete masonry       | boundary wall                      | $M_{z,cat} = 0.91$          | For h < 3.0 m       | $M_{s} = 0.830$          | Interpolated from             | This pre     | ssure is taken to   | represent a          |
| located in a Sydne     | y suburb, on a                     |                             | AS/NZS 1170.2       | AS/N                     | ZS 1170.2 Table 4.3           | Wind C       | lassification for F | ree-Standing         |
| gentle slope (with     | 60 metres upwind                   |                             | Table 4.1(A)        |                          |                               | Fences       | and Walls of $Nl_f$ |                      |
| distance to the cre    | st of a 4.0 m hill)                |                             |                     | Heigth of the hill,      | ridge or escarpment           |              |                     |                      |
| and shielded by ho     | ouses of 3.0 m roof                | Number of upwind            | shielding buildings | H = 4.0 m                |                               | The cor      | responding Wind     | l Loads for          |
| height and 7.0 m v     | vidth. The piers will              | within a 45° sector         | of 20 h radius      |                          |                               | Housin       | g (on the same si   | ite) can be          |
| be set in "insitu" s   | andy-clay material,                | n <sub>s</sub> = 2          |                     | Horizontal distance      | e upwind from the             | derived      | using AS 4055       |                      |
| with cautious estir    | nates of the means                 |                             |                     | crest of a hill, ridg    | ge or excarpment to           | Region       |                     |                      |
| of density 20 kN/r     | n <sup>3</sup> , internal angle of | Average roof heigh          | t of shielding      | a level half the he      | ight below the crest          | Ā            | AS 4055 Fig 2.1     | For Sydney           |
| friction 30° and co    | bhesion 5.0 kPa.                   | buildings                   |                     | $L_{u} = 60.0 \text{ m}$ |                               |              |                     |                      |
|                        |                                    | $h_{s} = 3.0 m$             |                     |                          |                               | Terrain      | Category            |                      |
| WIND LOAD USIN         | IG                                 |                             |                     | Windward slope           |                               | TC 3         | AS 4055             | Clause 2.3           |
| AS/NZS 1170.2:2        | 002                                | Average spacing of          | f shielding         | $H/2L_u = 4.0/(2x)$      | s 60.0)                       |              | For numerous cl     | osely spaces         |
| Region                 | A                                  | buildings                   |                     | = 0.033                  | < 0.05                        | 0            | bstructions the siz | ze of houses         |
|                        |                                    | $l_s = h(10/n_s + 5)$       |                     |                          |                               |              |                     |                      |
| Degree of hazard       | 2                                  | = 1.8([10/2] +              | 5)                  | Topography multi         | plier                         | Average      | slope               |                      |
|                        |                                    | = 18.0 m                    |                     | $M_t = 1.00$             | AS/NZS 1170.2                 | $\phi_s = 4$ | 1:60                |                      |
| Location               | Non-cyclonic                       |                             |                     |                          | Clause 4.4.2                  | = 1          | : 15                |                      |
|                        |                                    | Average breadth of          | shielding           |                          |                               |              |                     |                      |
| Design event for s     | afety 1 in 500                     | buildings                   |                     | Ultimate design g        | ust wind speed                | Topogra      | iphy                |                      |
|                        |                                    | $b_{s} = 7.0 \text{ m}$     |                     | $V_{zu} = V_R M_d (M$    | z,cat Ms Mt)                  | TI           | Fa                  | or $\phi_s < I : 10$ |
| Regional wind spe      | ed                                 |                             |                     | = 45.0 x 1.0             | x 0.91 x 0.830 x 1.0          | A            | LS 4055 Clause 2.   | 4, Table 2.3         |
| $V_R = 45 \text{ m/s}$ | AS/NZS 1170.2                      | Shielding parameter         | er                  | = 34.0 m/s               |                               |              |                     |                      |
|                        | Table 3.1                          | $s = l_s / (h_s b_s)^{0.5}$ | AS/NZS 1170.2       |                          |                               | Shieldin     | ıg                  |                      |
|                        |                                    |                             | Clause 4.3.3        | Ultimate free strea      | am gust dynamic               | Partic       | ıl Shielding (PS)   | AS 4055              |
| Regional wind mu       | ltiplier                           | = 18.0/(3.0 x 7             | 0) <sup>0.5</sup>   | wind pressure            |                               |              |                     | Clause 2.5           |
| $M_d = 1.0$            | AS/NZS 1170.2                      | = 3.93                      |                     | $q_{zu} = 0.0006 V_{zu}$ | <sup>2</sup> AS/NZS 1170.2    | Classifi     | cation              |                      |
|                        | Clause 3.3.1                       |                             |                     | = 0.0006 x 3             | 4.0 <sup>2</sup> Clause 2.4.1 | NI A         | S 4055 Clause 2.    | 2, Table 2.2         |
|                        |                                    |                             |                     | = 0.694 kPa              |                               |              |                     |                      |
|                        |                                    |                             |                     |                          |                               |              |                     |                      |

| The second second second                      | Strengton Compton                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|-----------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $V_{1} = 24.0 \text{ m/s}$                    | Structure Geometry                       | Wind loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| $V_{hu} = 34.0 \text{ m/s}$ AS 4035           | height of wall                           | Net pressure coefficient $C = 1.2 \pm 0.5(0.2 \pm 1) = -0.4(-1)(0.8 \pm 0.4) = -0.4(-0.775)(0.70)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.75)(0.7$ |             |
| Clause 2.1, Table 2.1                         | n=1.8 m                                  | $C_{pn} = 1.3 + 0.5(0.3 + \log_{10}(6/c_J)(0.8 - c/n))$ AS/NZS 11/0.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | able D2(A)  |
|                                               |                                          | $= 1.3 + 0.5 (0.3 + 10g_{10}(5.0)) (0.8 - 1.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Ultimate free stream gust dynamic             | Solid height of wall                     | = 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| wind pressure                                 | c = 1.8 m                                | Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| $q_{zu} = 0.0006 V_{zu}^2$                    |                                          | If b < 2c, C <sub>pn</sub> will increase from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 to 1.3  |
| = 0.0006  x  34.02                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| = 0.694 kPa                                   | Total length of wall                     | Aerodynamic shape factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                                               | b = 9.0 m                                | $C_{fig} = C_{pn} K_p$ AS/NZS 1170.2 D2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Note                                          |                                          | = 1.20 x 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| For convenience, design tables will           | Length/solid height                      | = 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| be prepared using the the ultimate            | b/c = 9.0/1.8                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| design gust wind speed, V <sub>hu</sub> , and | = 5.0                                    | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| the resulting ultimate free-stream            |                                          | For convenience, design tables will be prepared using the aerodyna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mic shape   |
| gust dynamic wind pressure, $q_{zw}$          | Solid height/total height                | factor; C <sub>fig</sub> , of 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| determined using AS 4055. This will           | c/h = 1.8/1.8                            | This may lead to small errors in the determination of pressure, but t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hese are    |
| enable the use of a wind classification       | = 1.0                                    | not considered significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| nomenclature similar to that used             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| in AS 4055. As indicated above,               | Angle of incident wind (Normal = 0)      | Ultimate net wind pressure on free-standing wall AS/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TZS 1170.2  |
| this may lead to small errors in the          | $\Phi = 0$                               | $p_{nu} = C_{fig} q_{zu}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lause 2.4.1 |
| determination of pressure, but these          |                                          | = 1.20 x 0.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| are not considered significant.               | Porosity reduction factor                | = 0.833 kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                               | $K_p = 1 - (1 - \delta)^2$ AS/NZS 1170.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                               | $= 1 - (1 - 1)^2$ D2.1                   | LOAD FACTORS AND CAPACITY REDUCTION FACTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                               | = 1.0                                    | Load factor on overturning wind pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                                               |                                          | G <sub>w</sub> = 1.0 AS 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 2002    |
|                                               | Length of wall between vertical          | Clause 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1(b)(iv)  |
|                                               | supports                                 | Load factor on restoring forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                               | B' = 2.4 m                               | Gr = 0.8 AS 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78 2002     |
|                                               |                                          | Clau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se J3(c)    |

| SHEAR FORCE AND BENDING                       | Cohesion (cautious estimate of mean)                            | PIER DETAILS                            | Multiplier to account for lateral        |
|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------|
| MOMENTS AT THE BASE OF WALL                   | $c_f = 5.0 \text{ kPa}$                                         | Total depth of pier                     | resistance of piers pushing into a       |
| Shear force at base support of exposed        |                                                                 | D = 0.900 m                             | body of soil                             |
| wall                                          | Design properties of soil                                       |                                         | k <sub>pier</sub> = 3.0                  |
| $V_b = G_w p_{nu} B' h$                       | Foundation soil partial factor on                               | Pier diameter                           |                                          |
| = 1.0 x 0.834 x 2.4 x 1.80                    | tan(\$\phi_f\$)                                                 | d <sub>pier</sub> = 0.450 m             | OVERTURNING ANALYSIS                     |
| = 3.60 kN                                     | $\Phi_{tan(\phi_e)} = 0.85$                                     |                                         | As the horizontal force increases, the   |
|                                               | 12                                                              | Note                                    | wall support will rotate about its base, |
| Bending moment at base of support of          | Foundation soil partial factor on                               | The following calculations convert      | pushing forward into the soil. The       |
| exposed wall                                  | cohesion                                                        | a circular pier to an equivalent        | movement will vary linearly from the     |
| $M_b = 0.5 G_w p_{nu} B' h^2$                 | $\Phi_{cf}^{*} = 0.70$                                          | square pier of the same overall cross-  | maximum at the ground surface to         |
| = 0.5 x 1.0 x 0.834 x 2.4 x 1.80 <sup>2</sup> |                                                                 | sectional area. By using this effective | zero at the bottom of the support.       |
| = 3.22 kN.m                                   | Foundation soil design internal                                 | square section, the designer can have   |                                          |
|                                               | friction angle                                                  | confidence in the calculated weight     | The resistance to this movement is       |
| FOUNDATION SOIL                               | $\phi_{f}^{*} = \tan^{-1}[\Phi_{\tan(\phi_{f})}\tan(\phi_{f})]$ | of pier, and the effective horizontal   | provided by the passive resistance       |
| The piers will be set in "insitu" sandy-      | $= \tan^{-1}[0.85 \tan(30^{\circ})]$                            | lever arms from an assumed point of     | of the soil in front of the support.     |
| clay material with the following              | = 26.1°                                                         | rotation.                               | Under uniform movement, the passive      |
| properties.                                   |                                                                 |                                         | pressure varies uniformly from zero at   |
| Any over-excavation should be filled          | Foundation soil design cohesion                                 | Effective pier thickness perpendicular  | the surface to a maximum at the base     |
| with compacted cement-stabilised              | $c_{f}^{*} = \Phi_{cf} c_{f}$                                   | to the wall                             | of the support.                          |
| road base.                                    | = 0.70 x 5.0                                                    | $T_p = (3.1416/4)^{0.5} d_{pier}$       |                                          |
| Design will be to the principles set out      | = 3.5 kPa                                                       | $= (3.1416/4)^{0.5} \times 0.450$       | Passive force over the total depth, D    |
| in AS 4678.                                   |                                                                 | = 0.399 m                               | $P_p = G_r k_{pier} K_p \rho L_p D^2/3$  |
|                                               | Passive pressure coefficient of                                 |                                         | = 0.9 x 3.0 x 2.58 x 19.6 x 0.399        |
| Density (cautious estimate of mean)           | foundation soil                                                 | Effective pier length along the wall    | x 0.900 <sup>2</sup> /3                  |
| $\rho_{f} = 20 \text{ kN/m}^{3}$              | $1 + \sin(\phi_f^*)$                                            | $L_p = (3.1416/4)^{0.5} d_{pier}$       | = 14.71 kN.m                             |
|                                               | $n_p = \frac{1}{1 - \sin(\phi_f^*)}$                            | $= (3.1416/4)^{0.5} \times 0.450$       |                                          |
| Internal angle of friction (cautious          | _ 1 + sin(26.1°)                                                | = 0.399 m                               | Lever arm of passive force               |
| estimate of the mean)                         | 1 - sin(26.1°)                                                  |                                         | $y_p = D/2$                              |
| $\phi_f = 30^{\circ}$                         | = 2.58                                                          |                                         | = 0.900/2                                |
|                                               |                                                                 |                                         | = 0.450 m                                |

| Restoring moment about the base of  | Restoring mon      | nent about centroid due     | REINFORCED MASONRY 'POSTS'                             | Masonry unit height                                                          |
|-------------------------------------|--------------------|-----------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| passive force                       | to pier/footing    | weight                      | <ul> <li>Concrete blocks: Width 190 mm,</li> </ul>     | $h_b = 190 \text{ mm}$                                                       |
| $M_p = P_p y_p$                     | $M_f = P_{vf} y_f$ |                             | strength grade 15 MPa                                  |                                                                              |
| = 14.71 x 0.450                     | = 2.69 x           | 0.133                       | <ul> <li>Blockwork will be built continuous</li> </ul> | Ratio of block to joint thickness                                            |
| = 6.62 kN.m                         | = 0.36 kl          | N.m                         | for a length of 2.4 m, with a pier                     | $h_b/h_j = 190/10$                                                           |
|                                     |                    |                             | located at the centre and                              | = 19.0                                                                       |
| Factored weight of wall             | Total restoring    | moment                      | articulation joints at each end.                       |                                                                              |
| $P_{vw} = G_r \rho_w h t b$         | $M_R = M_p + I$    | $M_w + M_f$                 | <ul> <li>Main reinforcement, 1-N16 bar in</li> </ul>   | Block height factor                                                          |
| = 0.8 x 16.0 x 1.8 x 0.19 x 2.4     | = 6.62 +           | 1.40 + 0.36                 | the centre of the pier                                 | kh = 1.3                                                                     |
| = 10.5 kN                           | = 8.38 k           | N.m.                        |                                                        |                                                                              |
|                                     |                    |                             | Masonry Properties                                     | Characteristic masonry strength                                              |
| Lever arm of wall weight            | Bending mom        | ent at base of pier         | Masonry unit characteristic                            | $\mathbf{f}_{\mathbf{m}} = \mathbf{k}_{\mathbf{h}} \mathbf{f}_{\mathbf{mb}}$ |
| $y_w = T_p (0.5 - 0.167)$           | from wind          |                             | unconfined compressive strength                        | = 1.3 x 6.20                                                                 |
| = 0.399(0.5 -0.167)                 | $M_b = G_w p_m$    | <sub>n</sub> B' h (h/2 + D) | f <sub>uc</sub> = 15.0 MPa                             | = 8.06 MPa                                                                   |
| = 0.133 m                           | = 1.0 x 0          | .828 x 2.40 x 1.80 x        |                                                        |                                                                              |
|                                     |                    | (1.80 / 2 + 0.900)          | Units are hollow                                       | Concrete Grout Properties                                                    |
| Restoring moment about centroid due | = 6.48 k           | N.m                         |                                                        | Concrete grout specification:                                                |
| to wall weight                      |                    | < 8.38 kN.m OK              | Block type factor                                      | Concrete grout shall comply with                                             |
| $M_w = P_{vw} y_w$                  |                    | ie, wall is stable          | k <sub>m</sub> = 1.6                                   | AS 3700 and have:                                                            |
| = 10.5 x 0.133                      |                    |                             |                                                        | <ul> <li>minimum portland cement</li> </ul>                                  |
| = 1.40 kN.m                         |                    |                             | Equivalent brickwork strength                          | content of 300 kg/cubic metre;                                               |
|                                     |                    |                             | $f'_{mb} = k_m (f'_{uc})^{0.5}$                        | <ul> <li>10 mm maximum aggregate size</li> </ul>                             |
| Factored weight of pier/footing     |                    |                             | = 1.6(15.0) <sup>0.5</sup>                             | <ul> <li>sufficient slump to completely fi</li> </ul>                        |
| $P_{vf} = G_r \rho_f T_f L_f D$     |                    |                             | = 6.20 MPa                                             | the cores; and                                                               |
| = 0.8 x 23.5 x 0.399 x 0.399 x 0.9  |                    |                             |                                                        | <ul> <li>minimum compressive cylinder</li> </ul>                             |
| = 2.69 kN                           |                    |                             | Mortar joint height                                    | strength of 20 MPa.                                                          |
|                                     |                    |                             | $h_i = 10 \text{ mm}$                                  |                                                                              |
| Lever arm of pier/footing           |                    |                             |                                                        |                                                                              |
| $y_f = T_p(0.5 - 0.167)$            |                    |                             |                                                        |                                                                              |
| = 0.399 (0.5 -0.167)                |                    |                             |                                                        |                                                                              |
| = 0.133 m                           |                    |                             |                                                        |                                                                              |

| Specified characteristic grout cylinder         | Area of main reinforcment                       | Main Reinforcement                                                            | Fitments                           |
|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|
| strength                                        | $A_{st} = N_t(3.1416 D_{dia.t}^{2/4})$ (approx) | Effective depth of reinforcement                                              | There are no shear reinforcement   |
| $f_c = 20 \text{ MPa}$                          | = 1 x 3.1416 x 16 <sup>2</sup> /4               | For centrally located reinforcement:                                          | fitments required in this type of  |
| >12 MPa OK                                      | = 200 mm <sup>2</sup>                           | d = D/2                                                                       | construction, which incorporates a |
| AS 3700 Clause 11.7.3                           |                                                 | For reinforcement near one face shell:                                        | single vertical reinforcing bar    |
|                                                 | Dimensions                                      | $\mathbf{d} = \mathbf{D} - \mathbf{d}_1 + \mathbf{D}_{\text{dia},\text{t}}/2$ |                                    |
| Design characteristic grout strength            | The most adverse loading is on the              | = 190/2                                                                       | Fitment yield strength             |
| $f'_{cg} = min[(1.3 \text{ x } f'_{uc}), 20.0]$ | pier near the middle of the wall                | = 95 mm                                                                       | $f_{sy.f} = NA$                    |
| AS 3700 Clause 3.5                              |                                                 |                                                                               |                                    |
| = min[(1.3 x 15), 20.0]                         | Width of pier (along the wall)                  | Effective width of reinforced section                                         | Fitment area                       |
| = min[19.5, 20.0]                               | B = 390 mm                                      | b = min(4D  or)                                                               | $A_f = NA$                         |
| = 19.5 MPa                                      |                                                 | 2D + length to structural end)                                                |                                    |
|                                                 | Depth of pier (through the wall)                | = 4 x 190                                                                     | Fitment spacing                    |
| Main Reinforcement Properties                   | D = 190 mm                                      | = 760 mm AS 3700 Clause 8.5                                                   | s = NA                             |
| Main reinforcement yield strength               |                                                 |                                                                               |                                    |
| $f_{sy} = 500 \text{ MPa}$                      | Density of reinforced concrete                  |                                                                               |                                    |
|                                                 | masonry                                         | Shear width of reinforced section                                             |                                    |
| Main reinforcement shear strength               | $\rho_{mas} = 2,200 \text{ kg/m}^3$             | $b_v = 200 \text{ mm}$                                                        |                                    |
| (dowel action)                                  |                                                 | Note: Only one core is grouted                                                |                                    |
| $f_{sv} = 17.5 MPa$                             | Modulus of elasticity                           |                                                                               |                                    |
|                                                 | $E = 1,000 f_{m}$                               | Design area of main tensile                                                   |                                    |
| Number of main tensile reinforcing              | = 1,000 x 8.06                                  | reinforcement                                                                 |                                    |
| bars                                            | = 8,060 MPa                                     | $A_{sd} = min[0.29(1.3f'_m)bd/f_{sy}, A_{st}]$                                |                                    |
| N <sub>t</sub> = 1                              |                                                 | = min[(0.29 x 1.3 x 8.06 x 760                                                |                                    |
|                                                 | Second moment of area of reinforced             | x 95 / 500), 200]                                                             |                                    |
| Diameter of main tensile reinforcing            | concrete masonry pier                           | = min[462, 200]                                                               |                                    |
| bars                                            | $I = B D^{3}/12$                                | $= 200 \text{ mm}^2$                                                          |                                    |
| D <sub>dia.t</sub> = 16 mm                      | = 390 x 190 <sup>3</sup> /12                    |                                                                               |                                    |
|                                                 | $= 222.9 \text{ x } 10^6 \text{ mm}^4$          |                                                                               |                                    |

| Reinforced Masonry Capacity                                                                                                                           |                                             | Load capacity (lim               | ited by deflection)             |                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|---------------------------------|--------------------------------------------------|--|
| Shear capacity                                                                                                                                        | AS 3700 Clause 8.8                          | $W_{\Delta u} = \Delta_a E I/48$ | L <sub>c</sub> <sup>4</sup> B') |                                                  |  |
| $\phi \mathbf{V} = \phi(\mathbf{f}'_{vm} \mathbf{b}_w \mathbf{d} + \mathbf{f}_{vs} \mathbf{A}_{st} + \mathbf{f}_{sy.f} \mathbf{A}_{sv} \mathbf{d}/s)$ |                                             | = [36 x 8,06                     | 0 x 222.9 x 10 <sup>6</sup> /(4 | 8 x 1.800 <sup>4</sup> x 2.400)]10 <sup>-9</sup> |  |
| = 0.75[(0.35 x 200 x 95) + (17.5 x 200) + 0                                                                                                           | /1000                                       | = 53.5 kPa                       |                                 |                                                  |  |
| = 0.75(6.65 + 3.50 + 0)                                                                                                                               |                                             |                                  |                                 |                                                  |  |
| = 7.61 kN                                                                                                                                             |                                             | Load capacity (limi              | ited by shear, bend             | ling moment or deflection)                       |  |
|                                                                                                                                                       |                                             | $W_{lu} = min(W_{vu})$           | $W_{mu}$ , $W_{\Delta u}$ )     |                                                  |  |
| Bending Moment Capacity                                                                                                                               | AS 3700 Clause 8.6                          | = min(1.76,                      | 1.69, 53.5)                     |                                                  |  |
| $\phi M = \phi f_{sy} A_{sd} d[1 - 0.6 f_{sy} A_{sd} d/(1.3 f'_{m} b d)]$                                                                             |                                             | = 1.69 kPa                       |                                 |                                                  |  |
| = 0.75 x 500 x 200 x 95[1 - (0.6 x 500 x 20                                                                                                           | 0)/(1.3 x 8.06 x 760 x 95)]/10 <sup>6</sup> | >                                | 0.834 kPa OK                    |                                                  |  |
| = 6.56 kN.m                                                                                                                                           |                                             |                                  |                                 |                                                  |  |
| Height of cantilever wall above the piers                                                                                                             |                                             |                                  |                                 |                                                  |  |
| L <sub>c</sub> = 1.800 m                                                                                                                              |                                             |                                  |                                 |                                                  |  |
| Limiting deflection                                                                                                                                   |                                             |                                  |                                 |                                                  |  |
| $\Delta_a = L_c/50$                                                                                                                                   |                                             |                                  |                                 |                                                  |  |
| = 1,800/50                                                                                                                                            |                                             |                                  |                                 |                                                  |  |
| = 36 mm                                                                                                                                               |                                             |                                  |                                 |                                                  |  |
| Load capacity (limited by shear)                                                                                                                      |                                             |                                  |                                 |                                                  |  |
| $W_{vu} = 1.0 \phi V / (B' L_c)$                                                                                                                      |                                             |                                  |                                 |                                                  |  |
| = 1.0 x 7.61/(2.400 x 1.800)                                                                                                                          |                                             |                                  |                                 |                                                  |  |
| = 1.76 kPa                                                                                                                                            |                                             |                                  |                                 |                                                  |  |
| Load capacity (limited by bending moment)                                                                                                             |                                             |                                  |                                 |                                                  |  |
| $W_{mm} = 2 \phi M/B' L_c^2$                                                                                                                          |                                             |                                  |                                 |                                                  |  |
| = 2 x 6.56/(2.400 x 1.800 <sup>2</sup> )                                                                                                              |                                             |                                  |                                 |                                                  |  |
| = 1.69  kPa                                                                                                                                           |                                             |                                  |                                 |                                                  |  |

(FENCES BUILT ON REINFORCED STRIP FOOTINGS)

### CONCRETE MASONRY FENCES

This data sheet is applicable to any free-standing, cantilever fence or wall for residential or commercial applications.

### PART B: CONCRETE MASONRY FENCES BUILT ON CONCRETE STRIP FOOTINGS

#### 1 INTRODUCTION

Part B of this data sheet applies to 190mm wide partially reinforced concrete masonry walls located in the center of the footing or at the edge of the footing depending on the property boundary requirements.

Free standing concrete masonry fences and boundary walls must be designed and constructed to withstand a range of loads, and in particular, wind loads. This manual provides guidance to qualified and experienced structural engineers on the selection of strip footing dimensions, wall steel spacing and masonry details for free standing reinforced concrete masonry fences and walls subject to a range of wind loads. There are many possible designs for concrete masonry fences and boundary walls. Two common arrangements are shown in **Figures 1** and **2**.

The vertical bars are N16 diameter and their spacing depends on the wall height and wind classification.



Reinforced Concrete Strip Footings

#### 2 WALL CONSTRUCTION

The walls are built from 190 mm partially reinforced hollow concrete block work structurally tied to reinforced concrete strip footings at their base and with a reinforced bond beam at the top. 2 Reinforced Concrete Masonry Wall with Reinforced Concrete Piers

(FENCES BUILT ON REINFORCED STRIP FOOTINGS)

### 3 WIND LOADS

Wind loads on free-standing concrete masonry fences and boundary walls should be calculated using AS/NZS 1170.2. However, designers often associate these structures with the design of houses to AS 4055.

Strictly speaking, boundary walls and fences are outside the scope of AS 4055, although the nomenclature used therein is useful in classifying the wind exposure of housing sites for wind loads on such structures.

The nomenclature used in this Data Sheet for the "Wind Classification for Free-Standing Fences and Walls" (N1<sub>f</sub> to C4<sub>f</sub>) has been adopted to differentiate it from the corresponding nomenclature, "Wind Classification for Housing" (N1 to C4), which is set out in AS 4055 for houses. Although the resulting ultimate free-stream gust dynamic wind pressures, designated q<sub>zw</sub> are the same, their derivation is different. The worked example below demonstrates the derivation for a "Wind Classification for Free-Standing Fences and Walls" of N1<sub>f</sub>.

Refer to Table 1

### 4 WALL RESISTANCE TO OVER TURNING

Table 1

The resistance to overturning is provided by the combined weight of the wall acting about an assumed point of rotation close to the toe of the footing. The distance from the toe to the point of rotation depends on the bearing capacity of the foundation soil, including its compaction. If the soil is firm with a high bearing capacity, the point of the rotation will be close to the toe. If the soil is soft with a low bearing capacity, the point of rotation will move closer to the centre of the footing. A reasonably conservative assumption is that the point about which the footing rotates is approximately B/3 from the toe of the footing, where B is the total footing width. This conservative approach has been used in this Data Sheet and as such customary bearing failure analysis has not been performed, however, if it is considered bearing failure analysis is necessary eq. low friction angle or poor quality soil) Please refer to typical CMAA manual, MA 51 Reinforced Concrete Masonry Canitilever Retaining Walls for guidance.

| The cost of the standing refields and that |                                                                  |                                                                                | ia (1a)                                                                          |
|--------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Wind<br>Classification                     | Design gust wind<br>speed at height 'h'<br>V <sub>zu</sub> (m/s) | Ultimate free-stream<br>gust dynamic wind<br>pressure<br>q <sub>zu</sub> (kPa) | Ultimate net wind<br>pressure on free-<br>standing wall<br>p <sub>nu</sub> (kPa) |
| N1 <sub>f</sub>                            | 34                                                               | 0.69                                                                           | 0.83                                                                             |
| N2 <sub>f</sub>                            | 40                                                               | 0.96                                                                           | 1.15                                                                             |
| N3 <sub>f</sub> C1 <sub>f</sub>            | 50                                                               | 1.50                                                                           | 1.80                                                                             |
| N4 <sub>f</sub> C2 <sub>f</sub>            | 61                                                               | 2.23                                                                           | 2.68                                                                             |
| N5 <sub>f</sub> C3 <sub>f</sub>            | 74                                                               | 3.29                                                                           | 3.94                                                                             |
| N6 <sub>f</sub> C4 <sub>f</sub>            | 86                                                               | 4.44                                                                           | 5.33                                                                             |

Wind Classification for Free Standing Fences and Walls

Note: Design pressure is based on an aerodynamic shape factor, C flo, of 1.20

|                        | Ohin fashing           |                                              |                                                  |                                     |  |
|------------------------|------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|--|
| Wind<br>Classification | Fence<br>Helght<br>'H' | Strip footing<br>width<br>Type A or B<br>'W' | Wall reinforcement<br>maximum spacing<br>'S' (m) | 190mm wali<br>reinforcement<br>size |  |
|                        | 1.80                   | 1.1                                          | 2.0                                              | N16                                 |  |
|                        | 1.60                   | 1.0                                          | 2.0                                              | N16                                 |  |
| N1 <sub>f</sub>        | 1.40                   | 0.9                                          | 2.0                                              | N16                                 |  |
|                        | 1.20                   | 0.8                                          | 2.0                                              | N16                                 |  |
|                        | 1.0                    | 0.7                                          | 2.0                                              | N16                                 |  |
|                        | 1.80                   | 1.3                                          | 2.0                                              | N16                                 |  |
|                        | 1.60                   | 1.2                                          | 2.0                                              | N16                                 |  |
| N2 <sub>f</sub>        | 1.40                   | 1.0                                          | 2.0                                              | N16                                 |  |
| -                      | 1.20                   | 0.9                                          | 2.0                                              | N16                                 |  |
|                        | 1.0                    | 0.8                                          | 2.0                                              | N16                                 |  |
|                        | 1.8                    | 1.7                                          | 1.2                                              | N16                                 |  |
|                        | 1.6                    | 1.5                                          | 1.6                                              | N16                                 |  |
| N3 <sub>f</sub>        | 1.4                    | 1.4                                          | 2.0                                              | N16                                 |  |
|                        | 1.2                    | 1.2                                          | 2.0                                              | N16                                 |  |
|                        | 1.0                    | 1.0                                          | 2.0                                              | N16                                 |  |
|                        | 1.8                    | 2.1                                          | 1.2                                              | N16                                 |  |
|                        | 1.6                    | 1.9                                          | 1.6                                              | N16                                 |  |
| N4 <sub>f</sub>        | 1.4                    | 1.7                                          | 2.0                                              | N16                                 |  |
|                        | 1.2                    | 1.5                                          | 2.0                                              | N16                                 |  |
|                        | 1.0                    | 1.3                                          | 2.0                                              | N16                                 |  |
|                        | 1.8                    | 2.7                                          | 1.0                                              | N16                                 |  |
|                        | 1.6                    | 2.4                                          | 1.2                                              | N16                                 |  |
| N5 <sub>f</sub>        | 1.4                    | 2.1                                          | 1.6                                              | N16                                 |  |
|                        | 1.2                    | 1.9                                          | 2.0                                              | N16                                 |  |
|                        | 1.0                    | 1.6                                          | 2.0                                              | N16                                 |  |
|                        | 1.8                    | 3.1                                          | 0.8                                              | N16                                 |  |
|                        | 1.6                    | 2.8                                          | 1.0                                              | N16                                 |  |
| N6 <sub>f</sub>        | 1.4                    | 2.5                                          | 1.2                                              | N16                                 |  |
|                        | 1.2                    | 2.5                                          | 1.6                                              | N16                                 |  |
|                        | 1.0                    | 1.9                                          | 2.0                                              | N16                                 |  |

### (CMAA DATA SHEET 5B)



Figure 3 Typical Reinforcement Details and Control Joint Locations



| DESIGN BRIEF           |                      |                                 |                       |                         |             |                                   |            |                              |               |
|------------------------|----------------------|---------------------------------|-----------------------|-------------------------|-------------|-----------------------------------|------------|------------------------------|---------------|
| Design a 1.8 m hi      | gh free-standing     | Terrain category n              | nultiplier            | Shielding mu            | ltiplier    |                                   | Notes:     |                              |               |
| concrete masonry       | boundary wall        | $M_{z,cat} = 0.91$              | For $h < 3.0 m$       | $M_{s} = 0.830$         |             | Interpolated from                 | This pr    | essure is taken to           | represent a   |
| located in a Sydn      | ey suburb, on a      |                                 | AS/NZS 1170.2         |                         | AS/NZS      | 1170.2 Table 4.3                  | Wind C     | lassification for F.         | Tree-Standing |
| gentle slope (with     | 60 metres upwind     |                                 | Table 4.1(A)          |                         |             |                                   | Fences     | and Walls of N1 <sub>f</sub> |               |
| distance to the cre    | est of a 4.0 m hill) |                                 |                       | Heigth of the           | hill, rid   | ge or escarpment                  |            |                              |               |
| and shielded by h      | ouses of 3.0 m roof  | Number of upwine                | d shielding buildings | H = 4.0 m               |             |                                   | The co     | rresponding Wind             | d Loads for   |
| height and 7.0 m       | width. The wall      | within a 45° sector             | r of 20 h radius      |                         |             |                                   | Housi      | ıg (on the same si           | ite) can be   |
| is to be partially r   | einforced with       | n <sub>s</sub> = 2              |                       | Horizontal di           | stance u    | pwind from the                    | derived    | l using AS 4055              |               |
| N16 reinforcing s      | teel at S = 2.0 m    |                                 |                       | crest of a hill         | , ridge o   | or excarpment to                  | Region     | 1                            |               |
| vertical centres. T    | he footing is to be  | Average roof heig               | ht of shielding       | a level half th         | ne heigh    | t below the crest                 | Ā          | AS 4055 Fig 2.1              | For Sydney    |
| strip footing Type     | A. i.e., with the    | buildings                       |                       | L <sub>u</sub> = 60.0 n | a           |                                   |            |                              |               |
| wall stem located      | in the centre of the | $h_{s} = 3.0 m$                 |                       |                         |             |                                   | Terrair    | ı Category                   |               |
| footing width B.       |                      |                                 |                       | Windward slo            | ope         |                                   | TC 3       | AS 4055                      | 5 Clause 2.3  |
|                        |                      | Average spacing o               | f shielding           | $H/2L_{u} = 4.0$        | 0/(2 x 60   | 0.0)                              |            | For numerous cl              | osely spaces  |
| WIND LOAD USI          | NG                   | buildings                       |                       | = 0.0                   | 033         | < 0.05                            |            | obstructions the si          | ze of houses  |
| AS/NZS 1170.2:2        | 2002                 | $l_s = h(10/n_s + 5)$           | )                     |                         |             |                                   |            |                              |               |
| Region                 | A                    | = 1.8([10/2] +                  | · 5)                  | Topography 1            | nultiplie   | er                                | Averag     | e slope                      |               |
|                        |                      | = 18.0 m                        |                       | $M_t = 1.00$            |             | AS/NZS 1170.2                     | $\phi_s =$ | 4:60                         |               |
| Degree of hazard       | 2                    |                                 |                       |                         |             | Clause 4.4.2                      | =          | 1:15                         |               |
|                        |                      | Average breadth o               | f shielding           |                         |             |                                   |            |                              |               |
| Location               | Non-cyclonic         | buildings                       |                       | Ultimate desi           | ign gust    | wind speed                        | Topogr     | aphy                         |               |
|                        |                      | $b_{s} = 7.0 \text{ m}$         |                       | $V_{zu} = V_R M$        | Id(Mz,ca    | t M <sub>s</sub> M <sub>t</sub> ) | TI         | Fe                           | or            |
| Design event for :     | safety 1 in 500      |                                 |                       | = 45.0                  | x 1.0 x (   | ).91 x 0.830 x 1.0                |            | AS 4055 Clause 2             | .4, Table 2.3 |
|                        |                      | Shielding paramet               | er                    | = 34.0                  | m/s         |                                   |            |                              |               |
| Regional wind sp       | eed                  | $s = 1_{s}/(h_{s} b_{s})^{0.5}$ | AS/NZS 1170.2         |                         |             |                                   | Shieldi    | ng                           |               |
| $V_R = 45 \text{ m/s}$ | AS/NZS 1170.2        |                                 | Clause 4.3.3          | Ultimate free           | stream      | gust dynamic                      | Parti      | al Shielding (PS)            | AS 4055       |
|                        | Table 3.1            | = 18.0/(3.0 x 7                 | .0) <sup>0.5</sup>    | wind pressure           | e           |                                   |            |                              | Clause 2.5    |
|                        |                      | = 3.93                          |                       | $q_{zu} = 0.000$        | $6V_{zu}^2$ | AS/NZS 1170.2                     | Classif    | ication                      |               |
| Regional wind m        | ultiplier            |                                 |                       | = 0.000                 | 6 x 34.0    | ) <sup>2</sup> Clause 2.4.1       | NI         | AS 4055 Clause 2.            | 2, Table 2.2  |
| $M_{d} = 1.0$          | AS/NZS 1170.2        |                                 |                       | = 0.694                 | kPa         |                                   |            |                              |               |
|                        | Clause 3.3.1         |                                 |                       |                         |             |                                   |            |                              |               |

| Illtimate design gust wind speed              | Structure Geometry               |           | Wind loads                                                |                                 |
|-----------------------------------------------|----------------------------------|-----------|-----------------------------------------------------------|---------------------------------|
| $V_{\rm hu} = 34.0 \text{ m/s}$ AS 4055       | Height of wall                   |           | Net pressure coefficient                                  |                                 |
| Clause 2 1 Table 2 1                          | h = 1.8  m                       |           | $C_{} = 1.3 \pm 0.5 (0.3 \pm 10g_{10}(b/cl) (0.8 - c/b))$ | AS/NZS 1170 2 Table D2(A)       |
|                                               |                                  |           | $= 1.3 + 0.5 (0.3 + \log_{10}(5.01) (0.8 - 1.0)$          |                                 |
| Ultimate free stream gust dynamic             | Solid height of wall             |           | = 1.20                                                    |                                 |
| wind pressure                                 | c = 1.8 m                        |           | Note:                                                     |                                 |
| $q_{\pi y}^{2} = 0.0006 V_{\pi y}^{2}$        |                                  |           | If $b < 2c$ , C                                           | m will increase from 1.2 to 1.3 |
| $= 0.0006 \times 34.0^2$                      |                                  |           |                                                           | F                               |
| = 0.694 kPa                                   | Total length of wall             |           | Aerodynamic shape factor                                  |                                 |
|                                               | b = 9.0 m                        |           | Cfig = Cpn Kp AS/NZS 117                                  | 0.2 D2.1                        |
| Note                                          |                                  |           | $= 1.20 \times 1.0$                                       |                                 |
| For convenience, design tables will           | Length/solid height              |           | = 1.20                                                    |                                 |
| be prepared using the the ultimate            | b/c = 9.0/1.8                    |           |                                                           |                                 |
| design gust wind speed, V <sub>hu</sub> , and | = 5.0                            |           | Note                                                      |                                 |
| the resulting ultimate free-stream            |                                  |           | For convenience, design tables will be prepared           | using the aerodynamic shape     |
| gust dynamic wind pressure, $q_{zw}$          | Solid height/total height        |           | factor, C <sub>fig</sub> , of 1.20                        |                                 |
| determined using AS 4055. This will           | c/h = 1.8/1.8                    |           | This may lead to small errors in the determinati          | ion of pressure, but these are  |
| enable the use of a wind classification       | a = 1.0                          |           | not considered significant.                               |                                 |
| nomenclature similar to that used             |                                  |           |                                                           |                                 |
| in AS 4055. As indicated above,               | Angle of incident wind (Nor      | mal = 0)  | Ultimate net wind pressure on free-standing wa            | 11 AS/NZS 1170.2                |
| this may lead to small errors in the          | $\Phi = 0$                       |           | $p_{nu} = C_{fig} q_{zu}$                                 | Clause 2.4.1                    |
| determination of pressure, but these          |                                  |           | = 1.20 x 0.695                                            |                                 |
| are not considered significant.               | Porosity reduction factor        |           | = 0.834 kPa                                               |                                 |
|                                               | $K_p = 1 - (1 - \delta)^2 AS/N2$ | ZS 1170.2 |                                                           |                                 |
|                                               | $= 1 - (1 - 1)^2$                | D2.1      | LOAD FACTORS AND CAPACITY REDUCTION                       | FACTORS                         |
|                                               | = 1.0                            |           | Load factor on overturning wind pressure                  |                                 |
|                                               |                                  |           | G <sub>w</sub> = 1.0                                      | AS 1170.0 2002                  |
|                                               | Length of wall used for calcu    | ulations  |                                                           | Clause 4.2.1(b)(iv)             |
|                                               | B' = 1.0 m                       |           | Load factor on restoring forces                           |                                 |
|                                               |                                  |           | G <sub>r</sub> = 0.8                                      | AS 4678 2002                    |
|                                               |                                  |           |                                                           | Clause J3(c)                    |

| SHEAR FORCE AND BENDING                             | METHOD TO FIND STRIP FOOTING            | Density of concrete footing                   | Wall restoring moment about point 'O'        |
|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------|
| MOMENTS AT THE BASE OF WALL                         | WIDTH B                                 | $\gamma_{f} = 23.5 \text{ kN/m}^3$            | $M_w = P_2 \times L_2$                       |
| Shear force at base support of exposed              |                                         |                                               | = 4.92 x W/6                                 |
| wall                                                | To find the required base width 'W' for | P1 factored weight of base                    | = 0.82 W kNm/mP <sub>3</sub> factored        |
| V <sub>b</sub> =G <sub>w</sub> p <sub>nu</sub> B' h | any given wind pressure and known       | $= G_r \gamma_f D W$                          |                                              |
| = 1.0 x 0.834 x 1.0 x 1.80                          | 300 mm base depth D. Set up either      | = 0.9 x 23.5 x 0.3 x W                        | wind force per meter run of                  |
| = 1.50 kN/m                                         | a quadratic equation or an iterative    | $P_1 = 6.35 W$                                | wall                                         |
|                                                     | process to solve for 'W'.               |                                               | $= G_{w} p_{nu} H 1.0$                       |
| Bending moment at base of support of                |                                         | L <sub>1</sub> lever arm base                 | = 1.0 x 0.83 x 1.8 x 1.0                     |
| exposed wall                                        | STRIP FOOTING DETAILS                   | = W-W                                         | $P_3 = 1.49 \text{ kN/m}$                    |
| $M_b = 0.5 G_w p_{nu} B' h^2$                       | 0.19                                    | 2 3                                           |                                              |
| = 0.5 x 1.0 x 0.834 x 1.0 x 1.80 <sup>2</sup>       | t                                       | $L_1 = W$                                     | L <sub>3</sub> lever arm of wind force about |
| = 1.35 kN/m                                         |                                         | 6                                             | point 'O'                                    |
|                                                     |                                         |                                               | = H/2 + D                                    |
| OVERTURNING ANALYSIS                                |                                         | Base restoring moment about point 'O'         | = 1.8/2 + 0.3                                |
| As the horizontal force increases, (i.e.,           | $H = 1.8$ $L_2$ $P_2$ $P_3$             | $M_B = P_1 \times L_1$                        | $L_3 = 1.2 m$                                |
| normally from wind) the wall will                   |                                         | = 6.35  W x W/6                               |                                              |
| rotate about its base.                              | · · · · · ·                             | $= 1.06 \text{ W}^{-} \text{kinm/m}$          | Wind force overturning moment about          |
| The resistance to this movement is                  | 3                                       | Po factored weight of wall                    | point 'O'                                    |
| provided by the weight and width of                 |                                         | $= G_{r} \gamma_{-r} H t$                     | $M_w = P_3 \times L_3$                       |
| base and wall stem providing restoring              | L P D=0.3                               | $= 0.9 \times 16.0 \times 1.8 \times 0.19$    | = 1.49 x 1.2                                 |
| moments about a point assumed to be                 |                                         | $P_{2} = 4.92 \text{ kN/m}$                   | = 1.79 kNm/m                                 |
| one third along the base from either                | - w/3                                   | -2                                            |                                              |
| end (toe) depending on which side of                |                                         | L <sub>2</sub> lever arm of wall weight about | Sum of moments about point $O = 0$           |
| wall the wind is blowing. Note one                  | W = r                                   | point 'o'                                     | $M_B + M_w - M_w = 0$                        |
| third base location is conservative and             | N <sub>lf</sub> wind pressure           | = W-W                                         | $1.06 W^2 + 0.82 W - 1.79 = 0$               |
| will provide adequate bearing capacity              | $p_{mu} = 0.83 \text{ kN/m}^2$          | 2 3                                           |                                              |
| for most average strength soils.                    |                                         | $L_2 = W$                                     |                                              |
|                                                     | Density of Partially reinforced wall    | 6                                             |                                              |
|                                                     | $\rho_{W} = 16.0 \text{ kN/m}^{3}$      |                                               |                                              |

| Quadratic equation                                      | SPACING OF REINFORCED                                  | Ratio of block to joint thickness                                              | Design characteristic grout strength            |
|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|
| A                                                       | MASONRY 'POSTS'                                        | $h_b/h_j = 190/10$                                                             | $f_{cg} = min[(1.3 \text{ x } f_{uc}), 20.0]$   |
| $=-\mathbf{B} \pm / \sqrt{\mathbf{B}^2 - 4\mathbf{ac}}$ | <ul> <li>Concrete blocks: Width 190 mm,</li> </ul>     | = 19.0                                                                         | AS 3700 Clause 3.5                              |
| 2a                                                      | strength grade 15 MPa                                  |                                                                                | = min[(1.3 x 15), 20.0]                         |
| $=-0.82/\sqrt{0.82^2-4 \times 1.06 \times (-1.79)}$     | <ul> <li>Blockwork will be built continuous</li> </ul> | Block height factor                                                            | = min[19.5, 20.0]                               |
| 2 x 1.06                                                | for a length of 2.4 m, with a pier                     | k <sub>h</sub> = 1.3                                                           | = 19.5 MPa                                      |
| =-0.82+2.87                                             | located at the centre and                              |                                                                                |                                                 |
| 2.12                                                    | articulation joints at each end.                       | Characteristic masonry strength                                                | Main Reinforcement Properties                   |
|                                                         | <ul> <li>Main reinforcement, 1 N16 bar in</li> </ul>   | $\mathbf{f}'_{\mathbf{m}} = \mathbf{k}_{\mathbf{h}} \mathbf{f}'_{\mathbf{mb}}$ | Main reinforcement yield strength               |
| $\therefore$ Base width W required = 0.96 m             | the centre of the pier                                 | = 1.3 x 6.20                                                                   | $f_{sv} = 500 MPa$                              |
| But Say = 1.0 m                                         |                                                        | = 8.06 MPa                                                                     |                                                 |
| Check:                                                  | Masonry Properties                                     |                                                                                | Main reinforcement shear strength               |
| $1.06 \ge 0.96^2 + 0.82 \ge 0.96 - 1.79 = 0$            | Masonry unit characteristic unconfined                 | Concrete Grout Properties                                                      | (dowel action)                                  |
| OK                                                      | compressive strength                                   | Concrete grout specification:                                                  | f <sub>sv</sub> = 17.5 MPa                      |
|                                                         | f <sub>uc</sub> = 15.0 MPa                             | Concrete grout shall comply with                                               |                                                 |
| Notes :                                                 |                                                        | AS 3700 and have:                                                              | Number of main tensile reinforcing              |
| <ol> <li>A similar approach can be used</li> </ol>      | Units are hollow                                       | <ul> <li>minimum portland cement</li> </ul>                                    | bars                                            |
| to determined footing width W for                       |                                                        | content of 300 kg/cubic metre;                                                 | Nt = 1                                          |
| strip footings with the wall stem                       | Block type factor                                      | <ul> <li>10 mm maximum aggregate size;</li> </ul>                              |                                                 |
| located at the edge of the footing.                     | k <sub>m</sub> = 1.6                                   | <ul> <li>sufficient slump to completely fill</li> </ul>                        | Diameter of main tensile reinforcing            |
| (See Figure 1 Type B footing                            |                                                        | the cores; and                                                                 | bars                                            |
|                                                         | Equivalent brickwork strength                          | <ul> <li>minimum compressive cylinder</li> </ul>                               | D <sub>dia.t</sub> = 16 mm                      |
| <ol><li>The footing Type B width values</li></ol>       | $f'_{mb} = k_m (f'_{uc})^{0.5}$                        | strength of 20 MPa.                                                            |                                                 |
| shown in Table 2 are the same as                        | = 1.6(15.0) <sup>0.5</sup>                             |                                                                                | Area of main reinforcment                       |
| footing Type A width values and                         | = 6.20 MPa                                             | Specified characteristic grout cylinder                                        | $A_{st} = N_t(3.1416 D_{dia,t}^{2/4})$ (approx) |
| hence are conservative                                  |                                                        | strength                                                                       | $= 1 \times 3.1416 \times 16^{2}/4$             |
|                                                         | Mortar joint height                                    | $f_c = 20 \text{ MPa}$                                                         | $= 200 \text{ mm}^2$                            |
|                                                         | h <sub>j</sub> = 10 mm                                 | > 12 MPa OK                                                                    |                                                 |
|                                                         |                                                        | AS 3700 Clause 5.6                                                             |                                                 |
|                                                         | Masonry unit height                                    |                                                                                |                                                 |
|                                                         | h <sub>b</sub> = 190 mm                                |                                                                                |                                                 |

| Dimensions                                | Main Reinforcement                                                     | Fitments                           |
|-------------------------------------------|------------------------------------------------------------------------|------------------------------------|
| The most adverse loading is on the        | Effective depth of reinforcement                                       | There are no shear reinforcement   |
| pier near the middle of the wall          | For centrally located reinforcement:                                   | fitments required in this type of  |
|                                           | d = D/2                                                                | construction, which incorporates a |
| Width of pier (along the wall)            | For reinforcement near one face shell:                                 | single vertical reinforcing bar    |
| B = 390 mm                                | $\mathbf{d} = \mathbf{D} - \mathbf{d}_1 + \mathbf{D}_{\text{dia.t}}/2$ |                                    |
|                                           | = 190/2                                                                | Fitment yield strength             |
| Depth of pier (through the wall)          | = 95 mm                                                                | $f_{sy.f} = NA$                    |
| D = 190 mm                                |                                                                        |                                    |
|                                           | Effective width of reinforced section                                  | Fitment area                       |
| Density of reinforced concrete            | b = min(4D  or)                                                        | $A_f = NA$                         |
| masonry                                   | 2D + length to structural end)                                         |                                    |
| $\rho_{mas} = 2,200 \text{ kg/m}^3$       | = 4 x 190                                                              | Fitment spacing                    |
|                                           | = 760 mm AS 3700 Clause 8.5                                            | s = NA                             |
| Modulus of elasticity                     |                                                                        |                                    |
| $E = 1,000 f'_{m}$                        | Shear width of reinforced section                                      |                                    |
| = 1,000 x 8.06                            | b <sub>v</sub> = 200 mm                                                |                                    |
| = 8,060 MPa                               | Note: Only one core is grouted                                         |                                    |
|                                           |                                                                        |                                    |
| Second moment of area of reinforced       | Design area of main tensile                                            |                                    |
| concrete masonry pier                     | reinforcement                                                          |                                    |
| $I = B D^{3}/12$                          | $A_{sd} = min[0.29(1.3f_m)bd/f_{sy}, A_{st}]$                          |                                    |
| = 390 x 190 <sup>3</sup> /12              | = min[(0.29 x 1.3 x 8.06 x 760                                         |                                    |
| = 222.9 x 10 <sup>6</sup> mm <sup>4</sup> | x 95 / 500), 200]                                                      |                                    |
|                                           | = min[462, 200]                                                        |                                    |
|                                           | = 200 mm <sup>2</sup>                                                  |                                    |
|                                           |                                                                        |                                    |
|                                           |                                                                        |                                    |
|                                           |                                                                        |                                    |
|                                           |                                                                        |                                    |
|                                           |                                                                        |                                    |

| rom Table 2 maximum                      | spacing of the N16 reinforcing steel is 2.0m                    | Limiting deflection                                                                      |
|------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                          | Clause 8.6 (a)                                                  | $AS 3700  \Delta_a = H_c/50$                                                             |
| φ = 0.75                                 | AS 3700 Clause 4.4                                              | = 1,800/50                                                                               |
| f <sub>vm</sub> = 0.35                   | AS 3700 Clause 8.8                                              | = 36 mm                                                                                  |
| Shear capacity                           |                                                                 | Load capacity (limited by shear)                                                         |
| $\phi V = \phi(f'_{vm} b_w d + f'_{vm})$ | $f_{vs}A_{st} + f_{svf}A_{sv}d/s$                               | $W_{vu} = 1.0 \phi V / (B' H_c)$                                                         |
| = 0.75[(0.35 x 2                         | 200 x 95) + (17.5 x 200) + 0]/1000                              | = 1.0 x 7.61/(1.0 x 1.800)                                                               |
| = 0.75(6.65 + 3                          | 50 + 0)                                                         | = 4.22 kPa                                                                               |
| = 7.61 kN                                |                                                                 |                                                                                          |
|                                          |                                                                 | Load capacity (limited by bending moment)                                                |
| Bending Moment Capac                     | ity                                                             | $W_{mn} = 2 \phi M/B' H_c^2$                                                             |
| $\phi M = \phi f_{sy} A_{sd} d[1 -$      | 0.6 f <sub>sy</sub> A <sub>sd</sub> d/(1.3 f <sub>m</sub> b d)] | = 2 x 6.56/(1.0 x 1.800 <sup>2</sup> )                                                   |
| = 0.75  x 500  x 2                       | 200 x 95[1 - (0.6 x 500 x 200)/(1.3 x 8.06 x 760                | $x 95)]/10^6 = 4.04 \text{ kPa}$                                                         |
| = 6.56 kN.m                              |                                                                 |                                                                                          |
|                                          |                                                                 | Load capacity (limited by deflection)                                                    |
| Check actual theoretical                 | spacing of reinforcing steel                                    | $W_{\Delta u} = \Delta_a E I/48 H_c^4 B'$                                                |
| $\phi M = p_{nu} S H H/2$                |                                                                 | = $[36 \times 8,060 \times 222.9 \times 10^{6}/(48 \times 1.800^{4} \times 1.0)]10^{-9}$ |
| $S = 2\phi M$                            |                                                                 | = 128 kPa                                                                                |
| $p_{nu} H^2$                             |                                                                 |                                                                                          |
| = 2 x 6.56                               |                                                                 | Load capacity (limited by shear, bending moment or deflection)                           |
| 0.83 x 1.8 <sup>2</sup>                  |                                                                 | $W_{lu} = min(W_{vu}, W_{mu}, W_{\Delta u})$                                             |
| = 4.9 m                                  |                                                                 | $= \min(4.22, 4.04, 128)$                                                                |
| ∴ > 2.0 a                                | llowed                                                          | = 4.04 kPa                                                                               |
| S = 2.0  m OK                            |                                                                 | > 0.834 kPa OK                                                                           |
|                                          |                                                                 |                                                                                          |
| Height of cantilever wal                 | l above the strip footing base                                  |                                                                                          |
| $H_c = 1.800 \text{ m}$                  |                                                                 |                                                                                          |